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ABSTRACT: High-efficiency separation of hexane isomers through selective molecular exclusion represents an
important yet challenging task in the petrochemical industry. It has stringent requirements on the adsorbents’ pore
shape and dimensions. Here we report the complete exclusion of branched hexanes from their linear isomer by an
aluminum metal−organic framework, CAU-21-ODB (ODB = 4,4′-oxidibenzoate) with high stability. The unique
gourd-shaped channels with suitable pore aperture lead to substantial uptake of nHEX (141 mg/g at 30 °C) but
negligible adsorption of its branched isomers under identical conditions. The capability of CAU-21-ODB for the
separation of hexane isomers has been verified by multicomponent breakthrough experiments. DFT calculations
further confirm the size-exclusion-based separation mechanism.

As an important petrochemical feedstock, each component of
light hydrocarbons has a specific value in manufacturing
different chemical products.1 For example, hexanes have five
isomers with varying degrees of branching. The linear
component, n-hexane (nHEX), is premium feed for ethylene
production, the most important process in the petrochemical
industry. The presence of branched isomers in the process can
lower ethylene yield. In contrast, the research octane number
(RON) of hexane isomers increases with the number of
branched chains. For example, the RONs for n-hexane
(nHEX), 3-methylpentane (3MP), and 2,2-dimethylbutane
(22DMB) are 30, 75, and 94, respectively.2 Thus, the branched
hexanes are superior gasoline blending components while the
linear isomer with the lowest RON needs to be removed.2 To
fulfill the specific role and make the best of each hexane
isomer, the linear and branched components of hexane isomers
must be separated efficiently.3 Traditional separation relies
primarily on energy-intensive heat-driven distillations.4 The
energy consumption associated with the process could be

potentially reduced assuming alternative technology such as
adsorptive separation could be implemented.5−7

The key to efficient adsorptive separation is to develop
optimal adsorbents with high separation efficiency. In this
context, metal−organic frameworks (MOFs) hold great
promise to address this challenging separation in light of
their structural diversity and tunable pore size, pore shape, and
surface functionality. MOFs have been extensively studied in
recent years for gas/vapor adsorption and separation, especially
for the separation of light hydrocarbons.8−10 As for the
separation of hexane isomers, a proof-of-concept study with
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Fe2(bdp)3 demonstrated the discrimination of hexanes with
different branching through a thermodynamically controlled
mechanism.11 A number of MOFs have been explored for this
separation over the past few years; however, MOFs that can
fully split hexane isomers through selective molecular exclusion
remain scarce. Complete separation of the isomers by taking
advantage of their different molecular dimensions has a
stringent requirement on the pore shape and pore size of the
adsorbent. In this work, we present the efficient discrimination
of hexane isomers by a robust aluminum MOF, CAU-21-ODB
(ODB = 4,4′-oxidibenzoate). It possesses 1D gourd-shaped
channels with a pore window of 4.6 Å that falls right between
the kinetic diameter of nHEX (4.3 Å) and those of its
branched isomers (>5 Å). Single-component adsorption and
multicomponent separation measurements demonstrated that
CAU-21-ODB is capable of splitting nHEX from its branched
isomers through selective molecular exclusion. The underlying
separation mechanism was further confirmed through DFT
calculations.
Results and Discussion. CAU-21-ODB was synthesized

following the previous report with slight modifications12 (see
Supporting Information for synthesis details). Solvothermal
reactions of AlCl3·6H2O and H2ODB in a mixed solvent of
DMF/water at 120 °C for 2 days yielded the as-synthesized
CAU-21-ODB. It crystallized in a tetragonal crystal system
with a space group of I422. The structure of CAU-21-ODB
was developed from the connection of eight-membered ring
bricks Al8 (Figure 1a), and each V-shaped ODB ligand
coordinated with two different Al8 clusters (Figure 1b). Each
Al8 octamer unit consists of eight AlO6 polyhedra via edge-
sharing (through μ-OH groups) in cis-connection, and the
octamers are further interconnected through ODB to form a
3D bcu-type network with 1D gourd-shaped channels (Figure
1c−e). The 1D channels contain independent cavities with an
accessible pore aperture of 4.6 Å.

The phase purity of the as-synthesized CAU-21-ODB was
confirmed via powder X-ray diffraction (PXRD) measure-

ments, where the pattern of the as-synthesized and methanol-
exchanged sample matched well with the theoretical one
(Figure S1). Thermogravimetric analysis (TGA) of the as-
synthesized sample showed a continuous mass loss; however,
the curve of the methanol-exchanged sample displayed a long
plateau up to 400 °C following an initial weight loss before 60
°C, indicating successful exchange of the high-boiling-point
solvents by methanol (Figure S2). The structure of CAU-21-
ODB was well-retained after being immersed in water at 80 °C,
or exposed to 90% humidity for 1 week, and or heated at 200
°C in open air for 1 week (Figure 2a). These results suggested
the high stability of the compound. CAU-21-ODB adsorbed
only a small amount of N2 at 77 K (Figure S3), and thus its
permanent porosity was evaluated by the adsorption of CO2 at
195 K (Figure S4), which yielded a BET surface area of 275
m2/g (Figure S5). Its pore size distribution curve was centered
at ∼4.7 Å, determined by the Horvath−Kawazoe (H−K)
model (Figure S6), which was consistent with the value
estimated from the crystal structure. The PXRD patterns of the
activated sample and sample after adsorption tests revealed
that the crystallinity was fully retained.

The robust framework and suitable pore dimensions of
CAU-21-ODB prompted us to evaluate its adsorption and
separation toward hexane isomers. Single-component adsorp-
tion experiments of nHEX, 3MP, and 22DMB were performed
at 30 °C (Figure 2b). CAU-21-ODB showed negligible
adsorption of 3MP and 22DMB; however, it demonstrated a
typical Type-I profile for the adsorption of nHEX with a
considerable capacity of 141 mg/g (173 mg/cm3). This
indicated that CAU-21-ODB represents a splitter for a
complete separation of linear hexane from its branched
isomers. The adsorption capacity of CAU-21-ODB is higher
than most of the previously reported MOF adsorbents that can
split linear and branched alkanes including Zr-bptc,13 HIAM-
203,14 Ni-Asp,15 Zn-adtb,16 and Ca-tcpb17 (Table S2). In
addition, the adsorption capacity of nHEX for CAU-21-ODB is
slightly higher than that of zeolite 5A at 80 °C (Figure S8).

Figure 1. Crystal structure of CAU-21-ODB. (a) Al8 building unit. (b) The coordination mode of the linker ODB. (c) Cavities and 1D
channels of CAU-21-ODB. (d and e) Simulated channel shape and dimensions of CAU-21-ODB. Color scheme: Al, cyan; O, red; C, gray.
The simulation of the channels and the pore surface was performed using the Mercury software with a probe radius of 1.2 Å.
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The adsorption kinetics of the different isomers suggested that
the adsorption of linear nHEX reached equilibrium in seconds,
while 3MP and 22DMB showed essentially no adsorption with
an increase in equilibrium time (Figure 2c). This confirmed
that the separation of linear and branched hexane isomers is
based on a selective molecular sieving process rather than a
kinetically controlled mechanism due to insufficient equilibra-
tion. We believe the selective molecular exclusion by CAU-21-
ODB can be attributed to its gourd-shaped channels with
optimal pore aperture.

To further evaluate the separation capability of the CAU-21-
ODB on hexane isomers, multicomponent column break-
through experiments were carried out with equimolar binary
mixtures (nHEX/3MP and nHEX/22DMB) and an equimolar
ternary mixture (nHEX/3MP/22DMB) at 30 °C. The results
of column breakthrough measurement with equimolar nHEX
and 22DMB showed that 22DMB eluted at the beginning of
the process while nHEX was retained in the column and did
not break out until the 72nd minute (Figure S9). Before nHEX
penetrated the column, a high-quality gasoline blending
component of 22DMB with a RON of 94 was obtained. The
column breakthrough measurement with equimolar nHEX and
3MP showed a similar result (Figure S10). 3MP broke out
immediately, while nHEX was retained for 75 min. These

results indicated that both 3MP and 22DMB were fully
excluded by CAU-21-ODB under dynamic adsorption
conditions. The ability of CAU-21-ODB to efficiently separate
hexane isomers with different branching was further examined
by column breakthrough experiments (Figure 2d) with an
equimolar ternary mixture of nHEX, 3MP, and 22DMB. As
expected, branched hexanes including both 3MP and 22DMB
eluted immediately from the column at the beginning of the
measurement. In contrast, nHEX was retained in the column
for 66 min. The real-time RON indicated that the value was
higher than 84 before the breakthrough of nHEX, which well
meets the requirement for industrially refined hexane blends.11

This is consistent with the aforementioned single-component
results. These results are not surprising, considering the kinetic
diameters of 3MP (5.0 Å) and 22DMB (6.2 Å).

To model the interactions between nHEX and the
framework, and understand the underlying separation mech-
anism of CAU-21-ODB, we performed ab initio calculations
with projected augmented wave (PAW) pseudopotentials
along with a van der Waals density functional (vdW-
DF1)18−20 as implemented in the VASP code.21,22 All three
hexane isomers were loaded at various positions to identify
their optimum binding sites. A very strong interaction of
nHEX with the framework is noted (Figure S11), leading to a

Figure 2. (a) PXRD patterns of CAU-21-ODB under various conditions. (b) Single-component adsorption isotherms of hexane isomers at 30
°C. (c) Adsorption kinetics of nHEX, 3MP, and 22DMB of the first data point from the corresponding adsorption isotherm at 30 °C. (d)
Multicomponent breakthrough curves of a ternary mixture of hexane isomers on CAU-21-ODB at 30 °C.
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binding energy of 1.23 eV (one molecule per unit cell). By
virtue of their larger sizes, the binding interaction becomes
unfavorable for 3MP and 22DMB at various sites within the
pore. Additionally, we also used the climbing image nudged
elastic band method (a transition-state search algorithm) to
calculate diffusion barriers for hexane isomers in the pores of
CAU-21-ODB.23 To that end, five transition-state geometries
were considered between the initial and final states. The
calculated barriers for nHEX and 3MP were 0.76 and 1.86 eV,
respectively (Figure 3). The very high barrier for 3MP was due

to its unfavorable binding energy at various sites within the
pore. Also, the barrier of 22DMB was too high for it to diffuse
into the channel. The induced charge density�i.e., the charge
rearrangement upon bond formation�suggests that nHEX
interacts with H and O from the framework (Figure S11).
These results further confirmed the size-exclusion-based
separation mechanism for hexane isomers by CAU-21-ODB.
Conclusion. In this study, we demonstrate the efficient

splitting of linear and branched hexane isomers by an
inexpensive and robust microporous aluminum MOF, CAU-
21-ODB. The compound possesses gourd-shaped channels,
and only nHEX with a relatively small kinetic diameter can
pass through the narrow neck, while the larger 3MP and
22DMB were completely excluded. Multicomponent column
breakthrough experiments showed that CAU-21-ODB can
effectively separate hexane isomers through selective molecular
exclusion. The separation mechanism of CAU-21-ODB for
hexane isomers was further confirmed at the molecular level by
ab initio calculations. Our findings provide useful information
for the future design of MOFs for separating light hydro-
carbons in the petrochemical industry.
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Figure 3. Diffusion energy barriers of nHEX and 3MP.
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