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ABSTRACT

Owing to the high energy density, lithium–sulfur batteries (LSBs) have attracted

a lot of attention as a representative of new secondary batteries. However, LSBs

also face some serious issues in practical applications such as the large volume

expansion of S cathode, shuttle effect of lithium polysulfide (LPSs), and dendrite

formation of lithium metal anode. In this work, hollow carbon sphere (HCS) was

used as a framework, and CoSe2/Se nanorods were uniformly loaded on the

HCS surface to form a 3D heterostructured composite (CS/Se/HCS). When

used as an active sulfur host, the HCS is conducive to the transport of electrons

and Li?; meanwhile, it can suppress the large volume expansion in the elec-

trochemical performance. CoSe2 can effectively adsorb LPSs and accelerate the

transformation of LPSs. We also investigated the effect of CoSe2/Se content on

the electrochemical performance of the S electrode. Among different CS/Se/

HCS samples, the CS/Se/HCS-0.3/S electrode exhibited the best electrochem-

ical performance; at 1C rate, after 500 cycles, it presents a reversible capacity of

511 mA h g-1. This work provided a new idea for the combination of transition

metal selenide and carbon materials, which can be used in LSBs and other

energy storage devices.
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GRAPHICAL ABSTRACT

Introduction

Due to the excessive burning of fossil fuels and the

rapidly growing demand for renewable energy, tra-

ditional Li-ion batteries can no longer meet the needs

of some energy storage equipment, and numerous

new batteries have appeared one after another [1–3].

Among the novel batteries, Li–S batteries (LSBs) with

high energy density (2600 Wh g-1), wide availability,

and low price are considered one of the most

promising new secondary batteries [4, 5]. However,

in the practical application of LSBs, S cathode

encountered some serious issues such as volume

expansion, the ‘‘shuttle effect’’ of lithium polysulfides

(LPSs), and poor conductivity [6–8]. Large volume

expansion will destroy the structure of the electrode,

leading to poor cycling stability; the ‘‘shuttle effect’’ of

LPSs results in the reduction of coulombic efficiency

and capacity; and the low electronic conductivity will

seriously affect the rate performance of S cathodes

[9–12].

In the past few years, to overcome these issues,

carbon-based materials such as carbon spheres, car-

bon tubes, graphene oxide, and carbon nanocages

were investigated as S hosts, these carbon-based

materials can significantly relieve the volume

expansion and improve the conductivity of S cath-

odes [13–17]. However, because of the weak

adsorption ability of nonpolar carbon materials for

polar LPSs, the shuttle of LPSs was not well sup-

pressed [18, 19]. Later, researchers found that N, P, or

other elements doping can enhance the polarity of

carbon-based materials; meanwhile, the heteroge-

neous element-doped carbon materials have a certain

adsorption capacity for LPSs [20]. Although

heteroelement doping has a certain effect, the

adsorption of LPSs is still not obvious [21].

To enhance the adsorption of carbon-based mate-

rials toward LPSs, many polar compounds including

oxides [22, 23], sulfides [24, 25], hydroxides [26, 27],

nitrides [28], etc. were introduced to the carbon-

based hosts. Experiments and theoretical calculations

testified that these compounds showed strong

chemical adsorption for LPSs. At the same time, these

compounds can accelerate the conversion of LPSs to

Li2S, thereby effectively inhibiting the ‘‘shuttle effect’’

[29, 30]. Among the polar compounds, because of the

similar atomic structure and electron distribution

between selenium and sulfur, selenides exhibit better

adsorption and electrochemical catalysis for LPSs.

Additionally, selenides show great application

potential in LSBs due to the better electronic con-

ductivity, [12, 31–33]. Li et al. [34] designed a B,

N-codoped carbon nanotube array decorated with

sulfilic and lithiophilic CoSe nanoparticles grown on

carbon cloth (CoSe@BNCNTs/CC) as both sulfur and

lithium hosts. The assembled Li–S full battery with

the CoSe@BNCNTs/CC dual-functional host exhib-

ited long-term cycling stability (800 cycles at 0.5 C

J Mater Sci



with a decay rate of 0.066% per cycle). Once we

designed and prepared a CoSe2/N-doped hollow

carbon tube (CoSe2/hNCTs) S host. At 3C, the

CoSe2/hNCTs-S electrode delivers excellent high rate

performance. And theoretical calculations also testi-

fied the excellent adsorption and electrocatalytic

performance of CoSe2 on LPSs [6].

It is reported that hollow structured materials are

favorable for sulfur loading and effective physical

confinement toward LPSs [35, 36]. Moreover,

heterostructured S hosts demonstrated excellent

electrochemical performance, because the

heterostructure can deform the interface and change

the charge distribution, thereby accelerating the dif-

fusion of Li? and reducing the energy barrier of

electrochemical reactions. For example, Ye and his

team prepared heterostructured CoSe/ZnSe

anchored on graphene aerogels and used it as a S

host; at 2 C, the CoSe/ZnSe-S electrode exhibited a

very low average capacity decay rate of 0.027% over

1700 cycles [37].

In this work, we carried out the related exploration

of heterostructured CoSe2 and successfully prepared

a CoSe2/Se/carbon hollow spheres (CS/Se/HCS)

heterostructure composite by using SiO2 spheres as

templates, and the composite was applied as a S host

for LSBs. The hollow carbon spheres can provide

high electronic conductivity and alleviate the large

volume change during the intercalation/deintercala-

tion of lithium. The CoSe2/Se attached on the HCS

surface can effectively adsorb LPSs and accelerate

theris conversion. Additionally, we also investigated

the effect of CoSe2/Se content on the lithium storage

performance. Among different CS/Se/HCS samples,

the CS/Se/HCS-0.3/S electrode exhibited the best

electrochemical performance. At 1 C rate, after 500

cycles, it can present a reversible capacity of

511 mA h g-1. The CS/Se/HCS-0.3/S electrode also

exhibits a reversible capacity of 480 mA h g-1 after

200 cycles at a high rate of 3 C.

Experimental section

Synthesis CS/Se/HCS host

Firstly, 12 mmol tetrapropoxysilane was dispersed

and stirred in a mixed solution of 10 mL deionized

water, 70 mL ethanol, and 3 mL ammonia water

(wt = 25%) at 25 �C; then, 0.56 mL formaldehyde

(wt = 37%), 0.4 g resorcinol, and 0.3 g cobalt nitrate

hexahydrate were added to the mixed solution and

stirred for 24 h, then washed with ethanol and

deionized water, and dried at 50 �C overnight to

obtain a black SiO2@Phenolic Resin/Cobalt com-

pound (SiO2@PR/CC) precursor. The precursor was

calcined in Ar at 700 �C for 5 h to obtain the SiO2@C/

Co intermediate. Next the SiO2@C/Co intermediate

was etched with 2 mol L-1 sodium hydroxide solu-

tion to remove the SiO2 core. After removing the SiO2

core, we got the Co/ hollow carbon spheres (Co/

HCS).

Different CS/Se/HCS samples were obtained by

heating Co/HCS and selenium powder with a mass

ratio of 1:2 in Ar at 350 �C for 3 h. The amounts of

cobalt source were 0.2, 0.3, and 0.4 g, and the corre-

sponding products were named CS/SeHCS-0.2, CS/

Se/HCS-0.3, and CS/Se/HCS-0.4, respectively.

Preparation of CS/Se/HCS/S electrodes

30 wt% CS/Se/HCS was mixed with 70 wt% S

powder and heated at 155 �C for 12 h under Ar. After

cooling, the mixture was reheated at 200 �C for

30 min to remove the excess S. The electrodes were

composed of CS/Se/HCS/S (70 wt%), acetylene

black (20 wt%), and polyvinylidene fluoride

(10 wt%). The preparation procedure was the same as

our previous report [38]. The diameter of each elec-

trode was 12 mm and the thickness was 200–400 nm,

where the active substance sulfur loading was

1.0–3.0 mg cm-2.

Material characterization

Shimadzu XRD-6100AS XRD Diffractometer with Cu

Ka radiation (k = 1.54 Å) was used to investigate the

phase structure of the prepared samples. The scan-

ning speed was 6� min-1 with a scanning range of

10–80�. The Raman spectrum was obtained by Lab-

Ram HR Evolution and the test laser wavelength was

532.03 nm. Thermogravimetric (TG) analysis was

characterized by a METTLER TOLEDO thermo-

gravimetric analyzer under Ar atmosphere. The

heating rate was 10� min-1 and the temperature

range was 25–600 �C. An ultraviolet spectropho-

tometer (TU-1901) was employed for the ultraviolet

test in the LPSs adsorption experiment. N2 adsorp-

tion and desorption isotherms were tested by

Micromeritcs GeminiV2380 analyzer operated at
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77 K. ESCALAB 250 spectrometer was employed to

measure X-ray photoelectron spectroscopy (XPS).

Monochromatic Al Ka (1486.6 eV) was used as the

X-ray emission source with a step size of 0.05 eV.

Scanning electron microscope (ZEISS G500) and

transmission electron microscope (FEI-TECNAI-G20)

were utilized to observe the morphologies of the

samples. The element distribution was also measured

on FEI-TECNAI-G20. The accelerating voltage of the

SEM is 5–15 kV, the working distance was 10 mm

and the high resolution was 4 mm. The accelerating

voltage of the TEM test was 200 kV.

Electrochemical test

The electrochemical performances of the CS/Se/

HCS/S electrodes were evaluated by typical CR2032

simulated batteries. The charging/discharging per-

formance of simulated batteries was recorded by the

NEWARE battery test system in a potential range of

1.7–2.8 V (vs. Li?/Li) at different C rates under 25 �C.

Electrochemical impedance spectroscopy (EIS) and

cyclic voltammetry (CVs) were carried out on the

CHI760E electrochemical workstation. 1.0 M LiTFSI

in DME: DOL = 1:1 Vol% with 5.0% LiNO3. Celgard

2400 and metal Li were used as separator and counter

electrode, respectively. The electrolyte dosage was

accurately controlled with an electrolyte/sulfur ratio

&55 lL mg-1 under normal conditions.

Results and discussions

The preparation process of the CS/Se/HCS host is

presented in scheme 1. Firstly, SiO2 spheres are syn-

thesized, and then, phenol and formaldehyde are

in situ polymerized on the SiO2 surface to form

SiO2@PR; meanwhile, cobalt salt is supported on the

SiO2@PR to form SiO2@PR/CC precursor. Next, the

SiO2@PR/CC precursor is transformed into SiO2@C/

Co intermediate under the calcination process. After

etching the SiO2@C/Co intermediate with 2 mol L-1

sodium hydroxide solution, the Co/HCS is obtained.

The final CS/Se/HCS is obtained by further

selenization.

The chemical composition and crystal structure of

the samples were studied by XRD analysis. All the

main peaks of the three samples in Fig. 1a can cor-

respond to CoSe2 (JCPDS card No. 53-0449) or Se

(JCPDS card No. 06-0362). Owing to the carbon in the

CS/Se/HCS is amorphous, there is no obvious car-

bon peaks. The diffraction peaks attributed to CoSe2

and Se in CS/Se/HCS-0.3 are significantly stronger

than those of the other two samples, indicating that

its crystallinity and phase purity is higher. Figure 1b

exhibits the Raman spectra of CS/Se/HCS-0.2/0.3/

0.4 samples, in which the two broad peaks at 1337

and 1585 cm-1 correspond to the defect state (D

band) and graphitization state (G band) of carbon

[39], and the other peak at 669 cm-1 is assigned to

CoSe2 [40]. ID/IG implies the defect degree in carbon

materials; it is obvious that CS/Se/HCS-0.3 exhibits

more defects, which is beneficial to increase the

electronic conductivity of the materials [41].

The TG test under N2 was employed to determine

the active S content in CS/Se/HCS-0.3/S electrode.

According to the TG results, the S content in the CS/

Se/HCS-0.3/S host is 63%, indicating the excellent

sulfur storage capacity of the CS/Se/HCS-0.3 host

(Figure S1). Figure 1c indicates the nitrogen adsorp-

tion/desorption isotherms of CS/Se/HCS-0.2/0.3/

0.4. The isotherms of the three samples are all of V

type with H3-type hysteresis loops. Among them,

CS/Se/HCS-0.3 exhibits a higher specific surface area

(9.7 m2 g-1) than the other two samples (4.3 and

6.7 m2 g-1), which is beneficial to improve the active

sites. The average pore size and pore volume of the

CS/Se/HCS-0.3 are about 26.5 nm and 0.04 cm3 g-1,

respectively, indicating that the CS/Se/HCS-0.3 has

mesoporous structure. And the suitable pore struc-

ture is beneficial for sulfur storage and electrolyte

wetting.

Scheme 1 Synthesis process of the CS/Se/HCS.
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Figure 1d demonstrates the high-resolution C1s

XPS spectrum in CS/Se/HCS-0.3, in which the main

three broad peaks appear at 282.0, 283.9, 284.5, and

285.9 eV are ascribed to C–C (defects), C–C, C=C, and

C-O, respectively [42, 43]. Among them, C–C mainly

comes from the hollow carbon spheres, C=C is

attributed to the oxidation of part of C–C during the

calcination process, and the C–O is generated due to

the partial oxidation in the surface of CS/Se/HCS

during the experiment process. The high-resolution

Co2p XPS spectrum manifests that the binding

energies of Co2p3/2 and Co2p1/2 appear at 778.2 and

793.1 eV, and their satellite peaks appear at 784.0 and

801.1 eV, consistent with the peak positions in the

literature [44]. The result confirms the presence of

Co2? cations in CS/Se/HCS-0.3 (Fig. 1e). Addition-

ally, two other peaks at 780.6 and 796.1 eV are

assigned to Co–O (III) and Co = O bonds, respec-

tively [39, 45, 46]. Two main broad peaks at 54.3 and

55.0 eV in the high-resolution Se3d XPS spectrum

belong to Se3d5/2 and Se3d3/2, respectively, which

are matched with the metal–Se bond (Fig. 1f) [47, 48].

The spin–orbit splitting of 0.7 eV between Se3d5/2

and Se3d3/2 peaks is attributed to metallic selenium

[49]. The XPS result also certifies the coexistence of

CoSe2 and Se.

The morphologies of HCS and CS/Se/HCS-0.2/

0.3/0.4 are observed by SEM tests. HCS shows

monodisperse spherical morphology (Figure S2).

Figure 2a–c exhibits the surface morphologies of CS/

Se/HCS-0.2/0.3/0.4 samples. It can be clearly

observed that all the samples exhibit a 3D spherical

structure. For CS/Se/HCS-0.2, only a small number

of carbon spheres are detected loaded with other

substances (Fig. 2a), which is due to the small

amount of cobalt source. Compared with CS/Se/

HCS-0.2, more nanorods are uniformly loaded on the

hollow carbon sphere surface (Fig. 2b), additionally,

and the hollow carbon spheres are connected toge-

ther. However, for CS/Se/HCS-0.4, due to excess

cobalt source the spherical structure is destroyed, and

severe aggregation is detected (Fig. 2c). The 3D

structure is beneficial to the transport of electrons and

Li?; meanwhile, it also can inhibit the large volume

variation of the S cathode during the electrochemical

process. The exposed CoSe2/Se nanorods on the HCS

surface can capture LPSs and accelerate their con-

version simultaneously. Furthermore, the

Figure 1 XRD patterns (a), Raman spectra (b), and N2 adsorption/desorption isotherms and pore size distribution (inset) (c) of the CS/Se/

HCS-0.2/0.3/0.4. XPS spectra of C1s (d), Co2p (e), and Se3d (f) in the CS/Se/HCS-0.3.
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morphology of the CS/Se/HCS-0.3/S electrode was

also characterized by SEM. As shown in Figure S3,

the morphology of the CS/Se/HCS-0.3/S is basically

the same as that of the CS/Se/HCS-0.3 host, illus-

trating that there are a small amount of sulfur on the

surface of CS/Se/HCS-0.3 and a large amount inside

the hollow/microporous structure of HCS. This also

testifies the excellent sulfur storage performance of

the CS/Se/HCS-0.3 host.

The microstructure of CS/Se/HCS-0.3 was further

observed by the TEM test. Under low-magnification

TEM image, the CS/Se/HCS-0.3 exhibits an irregular

3D spherical structure, and some nanorods are scat-

tered on the HCS surface. Maybe due to the sonica-

tion during the TEM test resulted in the destruction

of the sample structure, the hollow structure of car-

bon is not obvious (Fig. 2d). The obvious interplanar

distances of 0.21 and 0.13 nm in HRTEM are well

matched to the (111) plane of CoSe2 and the (101)

plane of Se, respectively (Fig. 2e). Figure 2g–i illus-

trates the EDS elemental mappings of the C, Se, and

Co, respectively. In C element mapping, the color of

the edge is heavier than the center, further demon-

strating the hollow structure of the carbon spheres.

However, the Se and Co are uniformly distributed

throughout the structure, indicating that Se and

CoSe2 exist not only on the surface of HCS but also in

the interior of HCS. The HCS can provide a highly

conductive network and prevent the LPSs from

shuttling by physical confinement. CoSe2/Se dis-

tributed on the HCS can effectively adsorb LPSs

through chemical adsorption and accelerate its con-

version. Thereby, CS/Se/HCS can effectively relieve

the ‘‘shuttle effect.’’

Figure 2 SEM images of the CS/Se/HCS-0.2 (a), CS/Se/HCS-0.3 (b), and CS/Se/HCS-0.4 (c). TEM (d), HRTEM (e), HAADF-STEM

(f), and EDS mapping (g–i) of the CS/Se/HCS-0.3.
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Figure 3a illustrates the cycling performances of

the CS/Se/HCS-0.2/0.3/0.4/S electrodes at 0.5 C.

The CS/Se/HCS-0.3/S electrode presents a high ini-

tial discharge specific capacity of 1012 mA h g-1 and

a high initial coulombic efficiency of 94%. After 400

cycles, the specific capacity can be maintained at

511 mA h g-1. However, the specific capacities of the

CS/Se/HCS-0.2/S and CS/Se/HCS-0.4/S electrodes

are 293 and 378 mA h g-1 after 400 cycles, respec-

tively. The electrochemical performance at high rates

is an important indicator for evaluating electrode

materials in practical application. For the CS/Se/

HCS-0.3/S electrode, a reversible capacity of

480 mA h g-1 can still be maintained at a high rate of

3 C after 200 cycles (Fig. 3b). Figure 3c exhibits the

long cycling performances of the three electrodes at

1 C. The initial specific discharge capacities of the

CS/Se/HCS-0.2/S, CS/Se/HCS-0.3/S, and CS/Se/

HCS-0.4/S electrodes are 705, 1089, and

694 mA h g-1, with initial coulombic efficiencies of

87%, 92%, and 86%, respectively. The capacities of the

three electrodes remain 210, 413, and 266 mA h g-1

after 500 cycles, respectively. Rate performances of

the prepared samples are tested at 0.1–3 C rate, at 0.1,

0.2, 0.5, 1, 2, and 3 C, and the specific capacities of

CS/Se/HCS-0.3/S electrode are 1184, 985, 847, 763,

Figure 3 a Cycling

performance of the CS/Se/

HCS-0.2/0.3/0.4/S electrodes

at 0.5C. b Cycling

performance of the CS/Se/

HCS-0.3/S electrode at

different C rates. c Cycling

stability of the CS/Se/HCS-

0.2/0.3/0.4/S electrodes at 1C.

d Rate performance of the CS/

Se/HCS-0.2/0.3/0.4/S

electrodes at different C rates.
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679 and 628 mA h g-1, respectively (Fig. 3d). When

the C rate returns to 0.1 C, the specific capacity can be

recovered to 920 mA h g-1, suggesting that the elec-

trode has good tolerance to current changes. It is

obvious that the specific capacities of the CS/Se/

HCS-0.2/S and CS/Se/HCS-0.4/S electrodes are

significantly lower than those of the CS/Se/HCS-0.3/

S electrode at each rate. The cycling performance of

the HCS/S electrode was also studied, and the result

is shown in Figure S4. After 300 cycles, the specific

capacity of the HCS/S electrode is 227 mA h g-1,

which is much lower than that of the CS/Se/HCS/S

electrodes. The CS/Se/HCS-0.3/S electrode also

exhibits satisfactory electrochemical performance

with a higher sulfur loading of 5.0 mg cm-2, which

can present an initial discharge specific capacity of

695 mA h g-1, and the capacity can be maintained at

446 mA h g-1 after 50 cycles (Figure S5). The elec-

trochemical performance tests proved that the CS/

Se/HCS-0.3/S electrode had the best electrochemical

performance, which is attributed to the special 3D

structure and the suitable CoSe2/Se content. Addi-

tionally, in Table S1, we make a comparison of related

sulfur hosts in the literature with this work. Com-

pared with other similar sulfur hosts, the CS/Se/

HCS-0.3/S electrode exhibits superior electrochemi-

cal performance, especially at high rates [50–57].

The electrochemical reaction mechanism of the CS/

Se/HCS-0.3 host with excellent performance was

investigated by CV, UV, and EIS. Typical CV profiles

of the CS/Se/HCS-0.2/0.3/0.4/S electrodes tested at

0.1 mV s-1 are given in Fig. 4a. Two cathodic peaks

at 2.30 and 2.04 V appearing in the CS/Se/HCS-0.3/S

electrode are assigned to the reduction of S8 to long-

chain LPSs and the long-chain LPSs to Li2S, respec-

tively. The two anodic peaks correspond to the

transformation of Li2S into LPSs and S8 again;

meanwhile, the obvious split anodic peaks indicate

that the CS/Se/HCS-0.3/S electrode has good elec-

trocatalytic performance and can accelerate the oxi-

dation process of sulfur cathode [58–60].

Furthermore, the voltage difference (DE) between the

anodic peak and cathodic peak can reflect the

dynamic performance of an electrode; it is worth

noting that the DE of CS/Se/HCS-0.3/S electrode is

the smallest, indicating that it has better dynamic

performance than other electrodes [61]. Furthermore,

except the first cycle, the CV profiles of the CS/Se/

HCS-0.3/S electrode show good coincidence in the

following cycles (Figure S6), suggesting the excellent

reversibility of the CS/Se/HCS-0.3/S electrode

[11, 24]. Figure 4b illustrates the initial charge–dis-

charge curves of the CS/Se/HCS-0.2/0.3/0.4/S

electrodes at 0.5 C; and the voltage difference

between charge and discharge plateaus of the CS/

Se/HCS-0.3/S electrode is 0.05 V, which is signifi-

cantly smaller than that of the CS/Se/HCS-0.2/S

(0.18 V) and CS/Se/HCS-0.4/S electrodes (0.21 V),

and the result is consistent with the CV [21, 26].

Meanwhile, the charge–discharge platform of the

CS/Se/HCS-0.3/S electrode is longer, illustrating

that the electrode has a higher specific capacity. In

addition, the voltage drop of the CS/Se/HCS-0.3/S

electrode in the initial charging process is signifi-

cantly lower than that of other electrodes, indicating

the improved kinetics of Li2S nucleation in this elec-

trode [12, 28]. To explore the adsorption performance

of the CS/Se/HCS-0.3 host toward LPSs, UV

adsorption test was performed. Immerse CS/Se/

HCS-0.3 in the prepared Li2S6 solution, the orange

solution becomes clear after 4 h (Fig. 4c), illustrating

the lower S6
2- concentration in the solution. Fur-

thermore, the UV adsorption curve showed that the

S2- characteristic peak at 423 nm disappears, illus-

trating that the CS/Se/HCS-0.3 host has excellent

adsorption performance toward LPSs [62, 63]. To

study the electrochemical catalytic performance of

the CS/Se/HCS hosts, CV tests of symmetrical bat-

teries in a potential range of - 0.8–0.8 V were per-

formed. The results are shown in Figure S11; it can be

seen that the CS/Se/HCS-0.3 host exhibits a higher

peak current, indicating the better electrochemical

catalytic of CS/Se/HCS-0.3.

Figure 4d exhibits the EIS plots of the CS/Se/HCS-

0.2/0.3/0.4/S electrodes. The semicircle in the high-

frequency region corresponds to the electron transfer

resistance of an electrode, and the straight line in the

low-frequency region is related to lithium-ion diffu-

sion. The CS/Se/HCS-0.3/S electrode presents a

smaller radius of curvature, indicating that the elec-

trode has a lower electron transfer resistance. This is

because the electrode contains more Se, which makes

the electrode have better high rate performance

[17, 57]. The corresponding Weber impedance dia-

grams are shown in Figure S7; based on the EIS

results, the Li? diffusion coefficient of the CS/Se/

HCS-0.2/S, CS/Se/HCS-0.3/S, and CS/Se/HCS-0.4/

S electrodes are 1.8 9 10–12, 7.9 9 10-12, and

4.4 9 10–12 cm2 s-1, respectively. In addition, CS/Se/

HCS-0.3 electrode still exhibits smaller charge
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transfer resistance after 100 cycles (Figure S8), illus-

trating the superior structural stability of the

electrode.

The charge storage behavior and capacitive con-

tribution were investigated by CV. CV curves at

various scan rates of the CS/Se/HCS-0.3/S electrode

and the corresponding b value are demonstrated in

Fig. 5a and b. As it is reported that the b values of 0.5

and 1.0 correspond to diffusion and surface control

behavior of an electrode during the electrochemical

process, respectively [64]. For the CS/Se/HCS-0.3/S

electrode, the b values of the four redox peaks are

0.54, 0.71, 0.37, and 0.72, respectively, suggesting that

the charge storage in this electrode is mainly con-

trolled by diffusion behavior. The capacities of LSBs

are mainly contributed by the conversion between

LiPSs and Li2S; therefore, an electrode with a high

Li? diffusion rate delivers an excellent rate perfor-

mance [65, 66]. In the EIS tests, we have gotten the

results that the Li? diffusion rate in CS/Se/HCS-0.3

electrode is the fastest; therefore, the CS/Se/HCS-0.3

electrode presents the best electrochemical perfor-

mance. As shown in Fig. 5c, the pseudo-capacitance

contribution ratio of the CS/Se/HCS-0.3 composite is

34.12% at 0.2 mV s-1. At scan rates of 0.2, 0.4, 0.6, 0.8,

and 1.0 mV s-1, Fig. 5d shows that 66%, 60%, 57%,

56%, and 52% of the total capacities are contributed

by diffused contribution.

SEM image characterization of Li metal anode after

100 cycles was utilized to study the anode surface.

After cycling, the lithium deposition is relatively

uniform, and there is no obvious dendrite formation

on the surface of Li metal anode (Figure S9). This

result also proves that the CS/Se/HCS-0.3 host can

limit the shuttle of LPSs. Meanwhile, in Figure S10

the morphology of the CS/Se/HCS-0.3/S cathode

after cycles was studied by SEM; it is found that the

structure of the cathode before and after cycling does

not change significantly and the nanorods can be

obviously detected, suggesting the superior stability

of the electrode.

Conclusion

In summary, we successfully designed and prepared

3D-structured CS/Se/HCS sulfur hosts for LSBs

using hollow carbon spheres as templates. The 3D

structure of the host is conducive to the transport of

Li? and electrons, and the hollow carbon sphere is

beneficial to suppress the volume change of the S

electrode during charge and discharge processes;

Figure 4 a CV curves of CS/

Se/HCS-0.2/0.3/0.4/S

electrodes at 0.1 mV s-1 and

b charging–discharging curves

of the CS/Se/HCS-0.2/0.3/0.4/

S electrodes at 0.5 C.

c Adsorption test and UV

spectra of the CS/Se/HCS-0.3

in Li2S6 solution. d EIS plots

of the CS/Se/HCS-0.2/0.3/0.4/

S electrodes.
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meanwhile, the shuttle of LPSs is alleviated to a cer-

tain extent through physical confinement. The

CoSe2/Se can inhibit LPSs shuttle through chemical

adsorption and accelerate their conversion. Electro-

chemical tests demonstrate that the CS/Se/HCS-0.3/

S electrode exhibits the best performance; at 1 C, it

can achieve a specific capacity of 424 mA h g-1 after

500 cycles. At high rates of 2 and 3C, the specific

capacities of the electrode can reach 597 and

591 mA h g-1 after 200 cycles, respectively. Further-

more, the specific capacity of the electrode with the

sulfur loading of 5.0 mg cm-2 can be maintained at

446 mA h g-1 after 50 cycles. This work provided a

new idea for the application of hollow carbon spheres

and transition metal selenide in LSBs.
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