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ABSTRACT: Due to the similar physicochemical properties, the separation of hexane isomers is a challenging task,
but it is, however, of high importance in the petrochemical industry. In this study, we present a three-dimensional
(3D) Y-based MOF, Y(BTB) (denoted as HIAM-318, H3BTB = 1,3,5-tri(4-carboxyphenyl)benzene), with a rarely
reported bnn topology. HIAM-318 possesses one-dimensional (1D) channels with appropriate pore size, leading to
size-exclusion-based separation of hexane isomers. It adsorbs linear n-hexane (nHEX) and monobranched 3-
methylpentane (3MP) but can barely accommodate dibranched 2,2-dimethylbutane (22DMB). Multicomponent
breakthrough experiments confirmed the separation capability. DFT calculations and computational modeling
verified the size-sieving separation mechanism and revealed the domains of guest−host interactions.

Separation of alkane isomers accordingly to their degree
of branching represents an important process in
petrochemical industry because each of the individual

isomers is of high value as chemical feedstock.1 In general,
linear alkanes are ideal ethylene feed, while dibranched alkanes
are optimal gasoline blends for RON (research octane
number) enrichment. For example, the RON of hexane
isomers follows the sequence of nHEX (30) < 3MP (75) <
22DMB (94).2 Conventional separation of alkane isomers was
dominated by heat-driven distillations, which are undoubtedly
energy-intensive.3 Selective physisorption by porous materials
under mild conditions has emerged as a promising alternative
approach and has been implemented in the separation
industry. The currently used adsorbent, zeolite 5A, adsorbs
linear alkanes but fully excludes their branched isomers
because of its limiting pore aperture. However, the incapability
of separating between branched alkanes limits its wider
applications. In this context, the separation of monobranched

and dibranched alkane isomers, which is crucial for producing
pure dibranched isomers with sufficiently high RON and for
optimizing ethylene feed, remains to be solved.4 Thus, it is
imperative to develop new adsorbents with optimal pore
structure to meet this separation need.

Among various porous adsorbent materials, metal−organic
frameworks (MOFs) have garnered significant attention due to
their large surface area, structural diversity, tunable pore size,
and modifiable pore environment.5−12 The unique features of
MOFs have enabled their efficient separation of various
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hydrocarbons, including alkane isomers.13 Different separation
mechanisms, including thermodynamically driven separation,
kinetic separation, and size-exclusion, have been practiced in
MOFs with varied pore shapes and pore dimensions. Long et
al. reported an Fe-MOF showing different adsorption strength

toward hexane isomers with different degrees of branching,
resulting in thermodynamic separation.14 Mendes et al.
documented a case of kinetically controlled separation of
hexane isomers using modified MIL-53(Fe)-(CF3)2.

15 In
comparison, separation through size-exclusion is more optimal,

Figure 1. Crystal structure of HIAM-318. (a) The coordination environment of Y3+ and the 1D {Y(COO)3}n chain. (b) Molecular structure
of the organic linker BTB3−. (c) Presentation of the pore structure of HIAM-318. (d) View of the 3D structure of HIAM-318. Color scheme:
Y: cyan polyhedra, O: red, C: gray. Hydrogen atoms have been omitted for clarity.

Figure 2. (a) Single-component adsorption isotherms of hexane isomers at 303 K. Breakthrough curves of the equimolar binary mixture of
nHEX and 22DMB. (b) Equimolar binary mixture of 3MP and 22DMB (c) and equimolar ternary mixture of nHEX, 3MP, and 22 DMB. (d)
Blue curve describes the real-time RON of eluted alkanes.
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as it may render high adsorption selectivity and separation
efficiency. In 2018, we demonstrated the size-exclusion
separation of linear and branched hexane isomers through
topology-directed pore size engineering of Zr-MOFs.16 And
later in 2020, we reported the full separation of monobranched
and dibranched hexane isomers by an Al-MOF with optimal
pore size.17 Over the past few years, a series of MOFs have
been reported with high efficiency for the separation of alkane
isomers (Table S3).18−28 However, adsorbents that are capable
of complete separation between mono- and dibranched are still
relatively rare. Thus, developing new structures that can meet
such a need and understanding the underlying separation
mechanism remains an important task.

In this work, we report a new Y-based MOF, HIAM-318,
with an optimal pore size of 5.4 Å that allows the size-exclusion
separation of monobranched and dibranched hexane isomers.
HIAM-318 was facilely synthesized at 120 °C by utilizing
Y(NO3)3·6H2O and the organic ligand H3BTB in DEF. Single
crystal X-ray diffraction analysis revealed that HIAM-318
crystallizes in orthorhombic crystal system with a space group
of Cmcm. The structure is built on {Y(COO)3}n chains where
each Y3+ atom is seven-coordinated to six carboxylate oxygen
atoms from BTB3− and one terminal water (Figure 1a). The
Y−O bond lengths in the structure of HIAM-318 range from
9.045 to 10.223 Å. The adjacent 1D {Y(COO)3}n chains
extend through the connection by BTB3− ligands, forming a
3D framework containing 1D channels along the c-axis (Figure
1c,d). The overall structure exhibits a rarely reported bnn
topology.29,30

Powder X-ray diffraction (PXRD) analysis confirmed the
phase purity of HIAM-318, showing excellent agreement
between the experimental and simulated patterns (Figure S6).
Thermogravimetric analysis (TGA) revealed an ∼30% weight
loss before 200 °C followed by a long plateau up to 550 °C
(Figure S3). HIAM-318 can undergo vacuum activation at a
temperature of 180 °C and retains its crystallinity after
adsorption (Figure S6).

To evaluate the porosity of HIAM-318, N2 adsorption at
77K was performed (Figure S4). The obtained adsorption
isotherm displayed a Type I profile with a maximum uptake of

168 cm3 g−1, yielding a BET surface area of 599 m2 g−1 and a
pore volume of 0.25 cm3 g−1. According to the DFT model, the
pore size distribution curve of HIAM-318 was centered
approximately at 5.4 Å, similar to the kinetic diameter of
3MP (5.5 Å). Considering the intrinsic structure flexibility of
MOFs, HIAM-318 holds the potential for separating
monobranched and dibranched hexane isomers. Single-
component adsorption isotherms of hexane isomers, including
nHEX, 3MP, and 22DMB on HIAM-318, were subsequently
tested (Figure 2a). It showed substantial adsorption of 33.3
cm3 g−1 for nHEX and 30.0 cm3 g−1 for 3MP at 30 °C. In
contrast, the uptake for 22DMB was negligible (<5 cm3 g−1).
This is not surprising considering the molecular dimensions of
the isomers and the pore size of HIAM-318. The results
indicated that HIAM-318 is capable of effectively separating
nHEX/3MP and 22DMB at 30 °C through selective molecular
exclusion. We further evaluated the durability of the material
by collecting three consecutive adsorption isotherms of nHEX,
and the results indicated no notable loss of adsorption capacity
after three runs, demonstrating its good cycle stability (Figure
S9).

The separation capability of HIAM-318 was further assessed
by multicomponent column breakthrough measurements. To
fully evaluate the separation performance, we first conducted
two-component breakthrough tests with equimolar binary
mixtures of 22DMB/nHEX and 22DMB/3MP (Figure 2b,c).
For the 22DMB/nHEX mixture, 22DMB eluted initially
without notable retention, while nHEX was retained in the
column for as long as 65 min. Similarly, in the test of the
22DMB/3MP mixture, 22DMB eluted at the beginning,
whereas 3MP did not break out until the 70th minute.
These experiments indicated the ability of HIAM-318 to
effectively discriminate between dibranched 222DMB and its
linear or monobranched isomers. To further assess the
separation capability of HIAM-318, breakthrough measure-
ments of an equimolar ternary mixture of nHEX/3MP/
22DMB were performed (Figure 2d). The results demon-
strated the immediate elution without any retention, which is
consistent with the findings of single-component adsorption
isotherms and breakthrough curves of binary mixtures. In

Figure 3. (a) Energy barrier for nHEX, 3MP, and 22DMB to diffuse into the channels of HIAM-318. Binding configurations of (b) nHEX
and (c) 3MP in the pore cavity.
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contrast, the retention times for 3MP and nHEX were
determined to be 38 and 51 min, respectively. These results
confirmed that HIAM-318 is capable of separating the
dibranched 22DMB from its linear and monobranched
isomers, which is aligned with our expectations considering
its optimal pore size. Real-time RON of the breakthrough tests
demonstrated that the initial eluate had an RON value
exceeding 90, meeting the crucial specifications for gasoline
blending components.

In order to gain deeper insights into the selective adsorption
behavior of HIAM-318 toward nHEX and 3MP, we employed
density functional theory (DFT) calculations based on first
principles.31 The exchange-correlation potential was described
using the generalized gradient approximation of Perdew−
Burke−Ernzerhof (GGA-PBE), and Grimme’s DFT-D3
methodology was utilized to describe dispersion interactions
among all the atoms in the adsorption models.32,33 These
calculations aimed to explore the interaction between hexane
isomers and the HIAM-318 framework and to assess their
transport capabilities within the channels. Density functional
theory (DFT) calculations unveiled an energy barrier of only
10.21 kJ mol−1 for nHEX and 31.62 kJ mol−1 for 3MP,
indicating their free passage along the HIAM-318 channels
without significant limitations (Figure 3). However, when it
comes to 22DMB, it encounters a substantial adsorption
barrier of 131.27 kJ mol−1, hindering its ability to enter the
channels by surmounting the energy barrier.

To further study the domains of guest−host interactions, we
modeled the guest molecules (nHEX, 3MP) within the
channels of HIAM-318 and examined the binding energy.
Indeed, we observed preferential occupation of the channels by
both nHEX and 3MP, aligning well with our experimental
observations. The results unequivocally indicate the presence
of two binding sites for each isomer, where the guest molecules
assume distinct configurations at each site. Due to the
constrained pore environment, the guest molecules engage in
robust interactions with the organic linkers. A detailed
examination of nHEX configurations at site I reveals its
entrapment through multiple C−H···O hydrogen bonds, with
the shortest distance of 1.950 Å, alongside the shortest C−
H···π distance of 2.326 Å. At site II, the head −CH3 group of
nHEX is ensnared by the BTB linkers’ oxygen atoms, primarily
through potent C−H···O hydrogen bonds (2.040 Å) and C−
H···π interactions (2.655 Å) with the benzene rings (Figure
3b). The calculated binding energies (ΔE) for two nHEX
molecules are 83 kJ mol−1 at site I and 75 kJ mol−1 at site II,
respectively. Similarly, 3MP at site I was grasped by multiple
C−H···O hydrogen bonds and C−H···π interactions with the
shortest distances of 2.303 and 2.280 Å. For site II, 3MP was
captured in a perpendicular fashion by the pore windows,
primarily through C−H···O hydrogen bonds and C−H···π
interactions, and the shortest distances are 2.176 and 2.505 Å
(Figure 3c). The pore cavity shows a similar binding energy for
two 3MP molecules, measuring 59 and 52 kJ mol−1 for sites I
and II, lower than those of nHEX, explaining the higher
adsorption capacity of HIAM-318 for nHEX compared to
3MP. These results are in agreement with the experimental
observations. Thus, the remarkable combination of molecular
recognition and size-sieving effects endows HIAM-318 with
outstanding separation performance for hexane isomers.

In summary, we report a Y-MOF (HIAM-318) with an
optimal pore aperture that adsorbs nHEX and 3MP but
excludes 22DMB. Single-component adsorption isotherms and

multicomponent breakthrough experiments confirmed the high
efficiency of HIAM-318 for the separation of hexane isomers
under mild conditions. Theoretical calculations provide
important insights into the underlying separation mechanism
of HIAM-318 in the sieving of hexane isomers. This study
presents an excellent adsorbent for the separation of hexane
isomers and offers valuable insights into material design for
targeted separations.
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